Description: AI deepfake detection tools are reportedly failing voters in the Global South due to biases in their training data. These tools, which prioritize English language and Western faces, show reduced accuracy when detecting manipulated content from non-Western regions. As a result of this detection gap, election integrity faces threats from and the amplification of misinformation, which leaves journalists and researchers with inadequate resources to combat the issue.
Entidades
Ver todas las entidadesPresunto: un sistema de IA desarrollado e implementado por Unknown deepfake detection technology developers , True Media y Reality Defender, perjudicó a Global South Citizens , Political researchers , Global South local fact-checkers , Non-native English speakers , Global South journalists y Civil society organizations in developing countries.
Estadísticas de incidentes
Risk Subdomain
A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
3.1. False or misleading information
Risk Domain
The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
- Misinformation
Entity
Which, if any, entity is presented as the main cause of the risk
Human
Timing
The stage in the AI lifecycle at which the risk is presented as occurring
Post-deployment
Intent
Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
Intentional
Informes del Incidente
Cronología de Informes
Recientemente, el expresidente y delincuente convicto Donald Trump publicó una serie de fotos que parecían mostrar a los fanáticos de la estrella del pop Taylor Swift apoyando su candidatura a la presidencia de los EE. UU. Las imágenes pare…
Variantes
Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.