Description: Facebook's AI wrongly labeled 20 posts from the Auschwitz Memorial Museum as violating community standards for "bullying" and "nudity," even deleting one image of orphans. The mislabeling of respectful historical content outraged the museum, which demanded an explanation. Meta, Facebook's parent company, apologized, attributing the error to mistaken notices sent by their AI system and acknowledged the posts did not violate any policies.
Entidades
Ver todas las entidadesPresunto: un sistema de IA desarrollado e implementado por Meta, perjudicó a Auschwitz Memorial Museum , Survivors of Holocaust victims y General public.
Estadísticas de incidentes
Risk Subdomain
A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
7.3. Lack of capability or robustness
Risk Domain
The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
- AI system safety, failures, and limitations
Entity
Which, if any, entity is presented as the main cause of the risk
AI
Timing
The stage in the AI lifecycle at which the risk is presented as occurring
Post-deployment
Intent
Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
Unintentional
Informes del Incidente
Cronología de Informes
Facebook has apologised for wrongly labelling photographs of Auschwitz victims as showing "bullying" and "nudity".
The social media giant incorrectly labelled 20 of the Auschwitz Memorial Museum's posts with a note saying they had been move…
Variantes
Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.
Incidentes Similares
Did our AI mess up? Flag the unrelated incidents
Incidentes Similares
Did our AI mess up? Flag the unrelated incidents