Description: An elderly Wisconsin woman was algorithmically determined to have a rapid recovery, an output which the insurer based on to cut off payment for her treatment despite medical notes showing her still experiencing debilitating pain.
Entidades
Ver todas las entidadesAlleged: NaviHealth developed an AI system deployed by Security Health Plan y NaviHealth, which harmed Frances Walter y elderly patients.
Clasificaciones de la Taxonomía CSETv1
Detalles de la TaxonomíaIncident Number
The number of the incident in the AI Incident Database.
501
Notes (special interest intangible harm)
Input any notes that may help explain your answers.
This may be a civil rights violation because there maybe unequal access to Medicare benefits (a government-provided service) with older people being at a disadvantage.
Special Interest Intangible Harm
An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
yes
Date of Incident Year
The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank.
Enter in the format of YYYY
2023
Risk Subdomain
A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
7.3. Lack of capability or robustness
Risk Domain
The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
- AI system safety, failures, and limitations
Entity
Which, if any, entity is presented as the main cause of the risk
AI
Timing
The stage in the AI lifecycle at which the risk is presented as occurring
Post-deployment
Intent
Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
Intentional
Informes del Incidente
Cronología de Informes

Un algoritmo, no un médico, predijo una recuperación rápida para Frances Walter, una mujer de Wisconsin de 85 años con un hombro izquierdo destrozado y alergia a los analgésicos. Se estimó que en 16,6 días estaría lista para dejar su hogar …
Variantes
Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.
Incidentes Similares
Did our AI mess up? Flag the unrelated incidents

Working Anything but 9 to 5
· 10 informes

Tempe police release report, audio, photo
· 25 informes

The Death and Life of an Admissions Algorithm
· 2 informes
Incidentes Similares
Did our AI mess up? Flag the unrelated incidents

Working Anything but 9 to 5
· 10 informes

Tempe police release report, audio, photo
· 25 informes

The Death and Life of an Admissions Algorithm
· 2 informes