Description: Rekognition's face comparison feature was shown by the ACLU to have misidentified members of congress, and particularly members of colors, as other people who have been arrested using a mugshot database built on publicly available arrest photos.
Entidades
Ver todas las entidadesPresunto: un sistema de IA desarrollado e implementado por Amazon, perjudicó a Rekognition users y arrested people.
Clasificaciones de la Taxonomía CSETv1
Detalles de la TaxonomíaIncident Number
The number of the incident in the AI Incident Database.
114
Special Interest Intangible Harm
An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
yes
Notes (AI special interest intangible harm)
If for 5.5 you select unclear or leave it blank, please provide a brief description of why.
You can also add notes if you want to provide justification for a level.
The ACLU's test demonstrated Rekognition's disproportionate inaccuracy on the faces of people of color.
Date of Incident Year
The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank.
Enter in the format of YYYY
2018
Date of Incident Month
The month in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the month, estimate. Otherwise, leave blank.
Enter in the format of MM
07
Estimated Date
“Yes” if the data was estimated. “No” otherwise.
No
Informes del Incidente
Cronología de Informes
aclu.org · 2018
- Ver el informe original en su fuente
- Ver el informe en el Archivo de Internet
La tecnología de vigilancia facial de Amazon es objeto de una creciente oposición en todo el país y, en la actualidad, hay 28 motivos más de preocupación. En una prueba que la ACLU realizó recientemente de la herramienta de reconocimiento f…
Variantes
Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.
Incidentes Similares
Did our AI mess up? Flag the unrelated incidents
Policing the Future
· 17 informes
Machine Bias - ProPublica
· 15 informes
Incidentes Similares
Did our AI mess up? Flag the unrelated incidents
Policing the Future
· 17 informes
Machine Bias - ProPublica
· 15 informes